
8 The Delphi Magazine Issue 53

Data Modules: Friend Or Foe?
by Guy Smith-Ferrier

Data Modules were introduced
in Delphi 2 in response to

developers attempting to turn
forms into makeshift data modules
in Delphi 1. Since Delphi 2 was
launched, the mechanics of using
data modules has changed very
little and the only significant
enhancement has been the addi-
tion of design-time diagrams in
Delphi 5. Most developers will
have seen, and probably used, data
modules, so this article is not an
explanation of what they are and
how to use them. Instead, I will
cover what the online help doesn’t
tell you, what problems you will
encounter in their use in the real
world, and (you will be relieved to
hear) how you can overcome these
problems.

Reusing Data Modules
In SDI And MDI Applications
So let’s take a look at how data
modules behave in an MDI applica-
tion (actually the same behaviour
can be exhibited in an SDI applica-
tion, it is just more readily demon-
strable in an MDI application).
Assume that I create a new applica-
tion and set the main form’s
FormStyle to fsMDIForm. Now add a
second form called CustomerForm
and set its FormStyle to fsMDIChild
(remember to take it out of the
AutoCreate list). Add a TMainMenu
to the main form with a menu item
called Browse Customers and add
this code to the menu item:

var
Form2: TForm2;

begin
Form2:=TForm2.Create(
Application);

Form2.Show;
end;

Add an OnClose event to TForm2 to
set Action to caFree. Create a new
data module, ensure that it is
autocreated, add a TTable to it for
the DBDEMOS Customer.db table, and
set Active to True. Ensure that

Form2 uses Data-
Module1 and add a
TDataSource to the
form and set its
DataSet to Data-
Module1.Table1.

Lastly, add a
DBGrid to Form2 and
connect it to
DataSource1. The
MDI application is
complete.

Now for the demo. Run the pro-
gram and click on Browse Customers
twice. You will see that the win-
dows are tiled. Click on any record
in either of the two windows and
you will see that the two windows
are not independent of each other
(see Figure 1).

Well, this isn’t too surprising,
because there is only one data
module being used and it is being
shared between two different
forms. Clearly, there is only a
single instance of the TTable object
and it has only one record pointer,
so when the record pointer is
updated in one form the other form
is updated with the change to the
same record pointer.

At first the whole subject may
seem a moot point because you
could ask ‘why would the user
want to run the same menu item
twice anyway?’. The idea isn’t as
daft as it seems. If the Customers
form has a menu option which
allows the user to set a scope so
that they could, for example, set
the city of the customer then the
user could show customers from
one city in one form and customers
from a different city in another
form, thereby allowing them to
compare the two lists. Further, if

you think that this problem won’t
happen to you because you don’t
write MDI applications, then you
should think again. The MDI exam-
ple is simply one way to illustrate
the sharing of a data module
across an application: data mod-
ules in an SDI application are
shared just as readily.

So the solution is simple, right?
Just create a second data module
to go with the second form? Ok,
let’s try this. Remove the data
module from the autocreate list
and change the menu item’s code
to that shown in Listing 1.

Unfortunately, this does not
solve the problem, as the two
forms are still linked to each other
via the same data module.

So what’s going wrong? To
understand how to fix this prob-
lem first we need to understand
what is actually happening. Here
goes. As each data module is
created it makes a call to
Screen.AddDataModule(self). This
adds the data module to the global
Screen’s private FDataModules
TList. TDataModule calls Screen.-
RemoveDataModule(self) in its
destructor. When the form which
uses the data module is created

➤ Figure 1

➤ Listing 1

var
Form2: TForm2;

begin
DataModule1:=TDataModule1.Create(Application);
Form2:=TForm2.Create(Application);
Form2.Show;

end;

10 The Delphi Magazine Issue 53

➤ Listing 2

each of the components which it
owns is also created. As each com-
ponent is created, FindGlobal-
Component is called to find the com-
ponent’s associated data module.
FindGlobalComponent searches
through Screen’s list of data mod-
ules for one matching the name it is
looking for (note that it doesn’t
make use of the data module’s
global variable at all and, like all
forms which are not autocreated,
you can delete this global vari-
able). So the fixup between the
components on the form and the
data module is based on the name
of the data module. The reason
that the form gets attached to the
wrong data module is that as each
data module is created it is created
using the same name. Table 1
shows the contents of Screen.-
FDataModules after two data mod-
ules have been created.

So, when FindGlobalComponent is
called upon to find a data module
matching the supplied name it
always finds the first instance of
the data module, no matter how
many copies of the data module
have been created.

With this in mind we can modify
our menu item: see Listing 2.

This is a very interesting trick.
As the data module is created it is
given its correct name (ie
DataModule1). As the form is cre-
ated it binds correctly to the data
module based on the data mod-
ule’s name. However, to prevent
subsequent forms from binding to
a previously created data module
instead of the most recently cre-
ated data module, we set the data
module’s name to empty. Table 2
shows the contents of Screen.-
FDataModules after two data mod-
ules have been created.

Of course, the solution isn’t fin-
ished yet. It breaks one of the basic
rules of object oriented design:
that is, at present the user of the

Screen.FDataModules i TDataModule(Screen.FDataModules[i]).Name

0 ‘DataModule1’

1 ‘DataModule1’

Screen.FDataModules i TDataModule(Screen.FDataModules[i]).Name

0 “

1 ‘DataModule1’

➤ Above: Table 1 ➤ Below: Table 2

var
Form2: TForm2;

begin
DataModule1:=TDataModule1.Create(Application);
Form2:=TForm2.Create(Application);
DataModule1.Name:='';
Form2.Show;

end;

TForm2 class is required to know
more about the class than they
should have to know (ie that in
order to use the form they are also
responsible for creating a data
module). So we need a little encap-
sulation.

Add a protected field called
DataModule of type TDataModule1 (or
even TDataModule) to TForm2. Add
an OnCreate event to TForm2 to
create the data module and pass
self as the owner of the data
module (this allows the form to
destroy its own data module when
it is safe to do so). However, we still
have to set the data module’s name
to empty and the best place to
achieve this is in the form’s OnShow
event. So, with a certain amount of
playing around, the problem can
be solved.

There is an alternative solution,
however. It follows the same steps
as the previous solution except for
setting the data module’s name to
empty in the form’s OnShow event.
Instead, you can set the data
source’s dataset directly in the
OnCreate event after the data
module has been created:

DataSource1.DataSet:=
DataModule1.Table1;

However, this solution is more
fragile than the first and therefore
less preferable. The problem is
that as TDataSources are added,
deleted and renamed, the form’s
OnCreate event needs to be modi-
fied to keep up with the changes.

By comparison, the first solution
can be written once and forgotten
about.

This also brings up the subject
of where to put the data source: on
the form or on the data module?
There are pros and cons with each
location. If the data source is
placed on the form and you are
using the solution of setting the
data source’s DataSet, as shown
above, then all of the data aware
controls on the form can be
attached to the data source and
there is only a single assignment of
the data module’s table to the data
source’s dataset. By contrast, if
the data source is on the data
module then there would be an
assignment for each and every
data aware control on the form.
Alternatively, if the data source is
placed on the data module then
master/detail relationships can be
defined in the data module. If you
use the solution of setting the data
module’s name to empty then the
best location for the data source is
on the data module.

Chaining Data
Modules In The IDE
The next problem with using data
modules is using ‘chained’ data
modules in the Delphi IDE. By
‘chained’ I mean one data module
which uses another data module.
In some ways the IDE is really quite
clever. Assume you have an appli-
cation which has a main form and
one other form, we’ll call it Form2. It
also has a single data module con-
taining a TDatabase, a TTable and a
TDataSource. Form2 uses the data
module and it contains a simple
DBGrid which uses the datasource
in the data module. If neither Form2
nor the data module is currently
open in the IDE then Form2 can be

12 The Delphi Magazine Issue 53

opened without any undesired
effects. This is where Delphi’s IDE
has performed some clever trick-
ery. If the IDE blindly opened the
form then it would result in an
error, because the TDataSource,
TTable and TDataBase upon which
the form is based are not available.
Instead, the DBGrid shows the data
as if the table was open and this
can only happen if the IDE surrepti-
tiously opens the data module
upon which Form2 is based. The
data module is opened but it is
hidden. It’s a rather useful trick
really.

Unfortunately the IDE is smart
only up to a point. Assume that you
move one or more of the compo-
nents in the data module to a
second data module and have the
first data module use the second.
For the sake of our example, we’ll
move the TDatabase to the new data
module. Now we have ‘chained’
several data modules. Now ensure
that all data modules and forms
except for the main form are closed
and reopen Form2. The IDE reports
an ‘Unknown database’ error. Why?
Well, the IDE is smart enough to
open the data module upon which
the form is based, but it isn’t smart
enough to open the data module
upon which the data module is
based. There is a potentially bigger
problem waiting to happen here.
Because the data module contain-
ing the TDatabase wasn’t opened,
the TTable on the other data
module cannot be opened, so the
IDE sets Table1.Active to False. If
the project is subsequently saved
then the table is saved in its new
state (ie closed) and the applica-
tion clearly will not function the
same way as before. Perhaps the
biggest problem here is that this
effect can easily go unnoticed.

So what can we do about it? Well,
one solution is never to leave
tables open in the design-time envi-
ronment. Instead, tables have to be
opened in the relevant data mod-
ule’s OnCreate event. This is a
rather poor solution. The problem
with this solution is that you lose
all of the benefits of the design-
time environment. A general prin-
ciple of development in any devel-
opment environment is that you

want to have as much of your appli-
cation verified at design-time or
compile-time as possible. If ever
you have a choice between a solu-
tion which can be verified at
design-time or compile-time, as
opposed to a solution which can
only be tested at runtime, then you
should always choose the former,
everything else being equal. By
closing the tables at design-time
you do not get the verification that
the table exists and all of the
required fields are still in the data-
base. If there is one maxim which
sustained application develop-
ment has taught me, it is that
change is the only constant. Every-
thing changes. Changes to the
database structure are a continu-
ous process and leaving tables
open at design-time helps protect
against these changes.

Another solution to the problem
is always to ensure that the data
modules required by other data
modules (ie the data modules
higher up in the data module
chain) are always open before
opening up a form which is
dependent on them. There are
several ways to implement this
solution.

The most laborious, cumber-
some and error-prone way is to
remember to manually open rele-
vant data modules before opening
dependent forms. The next solu-
tion is to use the Project Desktop
option (on the Preferences tab in
Tools | Environment Options). This
option saves the current configura-
tion of the desktop in the project’s
DSK file when the project is closed.
This solution needs to be treated
with care. The idea here is to use
Delphi to ensure that the data
modules are opened in the IDE
before the forms which need them
are opened. This requires an
understanding of how Delphi saves
and restores this information.
When a project is closed Delphi
saves the open modules in the
project’s DSK file. However, it is

sensitive to which form currently
has focus in the IDE. The open
forms and data modules are saved
in the Modules section of the DSK
file (which is a regular INI file).
Listing 3 shows the Modules section
of a DSK file.

The form or data module which
has focus in the IDE when the appli-
cation is closed is the first module
in the list. When the project is
reopened the files are opened in
the order dictated in the DSK file.
With this knowledge it is easy to
effect a solution and also to see
how easy it is to let Delphi interfere
with the solution.

The solution to the problem is to
ensure that the data modules are
listed in the DSK before any of the
forms on which they are depend-
ent. One way to do this is to ensure
that, before you close an applica-
tion, you always ensure that either
all forms except the main form are
closed and ‘chained’ data modules
are opened, or that the ‘chained’
data module has focus. Unfortu-
nately it is all too easy to break this
solution because, as Delphi always
saves the DSK when the project is
closed (if Project Desktop is
checked), then it is too easy to
forget to move focus away from a
form which is dependent on a data
module chain. If the project is
closed with a form having focus
then that form is saved at the top of
the modules list and it will be the
first form opened when the project
is reopened and the data module
won’t have been created and we
are back to square one.

A better variation of this solu-
tion is to open the project, open
the main form, open the chained
data modules, close any other
forms, check the Project Desktop
option and close the project. Then
open the project and uncheck Pro-
ject Desktop. In this way the pro-
ject is always opened in a suitable
state and order of the modules in

[Modules]
Module0=C:\DesignTime\DesignTimeDM2.pas
Module1=C:\DesignTime\DesignTimeU2.pas
Module2=C:\DesignTime\DesignTimeU1.pas
Count=3
EditWindowCount=1

➤ Listing 3

January 2000 The Delphi Magazine 13

the DSK file is never rewritten
because Project Desktop has been
unchecked.

Still one more variation on this
solution is to write a utility to auto-
matically reorder the modules in
the DSK file. This utility would look
at each file in the list and determine
if it is a form or a data module and
then rewrite the list so that the
data modules are placed at the top
of the list. This isn’t the simplest of
undertakings, for two reasons.
First, you’d need to know when a
module is a form and when it is a
data module (a simple solution
could be based on a naming con-
vention for your files). Secondly, it
would require you to either run the
utility manually every time before
a project is opened or alternatively
make use of the Open Tools API to
ensure the DSK is rewritten imme-
diately before a project is opened.

Reusing DataSets
With Business Logic
Another problem with data mod-
ules is also centred around their
reuse. This problem, however,
doesn’t concern the reuse of their
state information (ie the record
pointer, etc.). Instead it concerns
the reuse of their business infor-
mation. One of the frequently
touted benefits of data modules is
that they are useful for reusing
business logic or, more accurately,
centralising the definition of busi-
ness logic. Certainly data modules
do achieve this goal. However, the
mechanism of data modules does
not allow for a distinction between
those properties and events which

are used for ‘reusable’ business
logic and those properties and
events which are used for context
specific handling of a dataset. For
example, a dataset might include a
BeforePost event to specify some
record-level validation (eg that an
employee’s gender cannot be male
if their title is Mrs). This is a busi-
ness rule and, certainly, data mod-
ules succeed in allowing this
validation code to be reused
across an application. In one spe-
cific use of a data module this
might be all that is required. How-
ever, in another context the pro-
grammer might want to add
context specific behaviour. For
example, the dataset might include
an AfterPost event to update a
status flag on a status bar to
change the record state from
Editing to Saved. Clearly this
AfterPost event must only be used
in this one specific context.

One solution to this problem is
to hand code the exceptions to the

business rules, ie the context
specific part. Assuming that the
data module is called DataModule1
and it has a table called Table1 and
we want to add three context spe-
cific event handlers, Listing 4
shows the events which could be
added to a form called Form3.

The form’s constructor would
be responsible for manually
assigning these events (Listing 5).

Although this solution works in
the example given, it is fraught
with danger: if someone declares a
BeforeInsert event for Table1 in
DataModule1 then the subsequent
assignment of Form3’s BeforeInsert
event would cause the data mod-
ule’s event to be completely
bypassed. You could, of course,
set up a system of event chaining
or event notification or broadcast-
ing but as Delphi’s event model is
single casting instead of multi-
casting, any such solution is neces-
sarily a proprietary solution.

Another solution to this prob-
lem is to use visual form inheri-
tance. To inherit from an existing
data module use File | New, select
the tab with the same name as the
project, select the data module
and click OK. This creates a new
data module which inherits from
the original data module. All of the
context specific changes can be
added to this new data module
without interfering with the origi-
nal data module and whilst keep-
ing the inheritance chain. This
solution has some advantages
over the previous solution. Firstly,
it allows events to be set using the
object inspector instead of in code

procedure TForm3.AfterPost(DataSet: TDataSet);
begin
StatusBar1.SimpleText:='Saved';

end;
procedure TForm3.BeforeEdit(DataSet: TDataSet);
begin
StatusBar1.SimpleText:='Editing';

end;
procedure TForm3.BeforeInsert(DataSet: TDataSet);
begin
StatusBar1.SimpleText:='New record';

end;

➤ Above: Listing 4 ➤ Below: Listing 5

procedure TForm3.FormCreate(Sender: TObject);
begin
DataModule:=TDataModule1.Create(self);
DataModule.Table1.BeforeInsert:=BeforeInsert;
DataModule.Table1.BeforeEdit :=BeforeEdit;
DataModule.Table1.AfterPost :=AfterPost;

end;

procedure TDataModule2.Table1BeforeEdit(DataSet: TDataSet);
begin
inherited;
Form.StatusBar1.SimpleText:='Editing';

end;
procedure TDataModule2.Table1BeforeInsert(DataSet: TDataSet);
begin
inherited;
Form.StatusBar1.SimpleText:='New record';

end;
procedure TDataModule2.Table1AfterPost(DataSet: TDataSet);
begin
inherited;
Form.StatusBar1.SimpleText:='Saved';

end;

procedure TForm4.FormCreate(Sender: TObject);
begin
DataModule:=TDataModule2.Create(self);
TDataModule2(DataModule).Form:=self;

end;

➤ Above: Listing 6 ➤ Below: Listing 7

14 The Delphi Magazine Issue 53

and this is an easier approach to
development. Secondly, it doesn’t
suffer from the problem of over-
writing the original data module’s
own events as each event created
in the inherited data module starts
with the word inherited in order to
call the inherited event first. How-
ever, all is not completely well with
this solution either. Firstly, encap-
sulation purists will be very disap-
pointed with the amount of
coupling involved with the form
unit and the new data module unit.
Consider Listing 6 which shows the
code added to the new data
module to update the form’s status
bar.

To update the status bar the data
module must have intimate knowl-
edge of the form. So the new data
module has a public field, Form:
TForm4 (where TForm4 is the name of
the new form). The form’s OnCreate
event is shown in Listing 7.

So the form knows about the new
data module and the new data
module knows about the form.
Although the problem of the circu-
lar reference between the two
forms is easily solved (by placing
one uses clause in the implementa-
tion section) the heavy coupling of
two units could be frowned upon
from a design viewpoint.

Friend Or Foe?
So are data modules your friend or
your foe? Well, let’s look at what
they’re good at. Data modules
allow you to keep your forms tidy
by placing non-visual components
in a separate location. In addition
they allow you to reuse business
logic across your application. One
could also argue that the new Data
Diagram support added in Delphi 5
allows you to represent the rela-
tionship between your tables
graphically. However, in its cur-
rent form, I think this is a bit of a
non-feature, as most applications
with a reasonably well developed
database are assisted by some
entity relationship or UML tool.
What would have been more useful
than the diagramming support
would have been an extension to
the Open Tools API to allow third
parties to write drivers for their
case tools to integrate with the IDE.

This would have also been excep-
tionally useful for bringing back to
life the unusable data dictionary
also introduced in Delphi 2.

So the main benefit of data mod-
ules is that they allow business
logic to be centralised in an appli-
cation. However, this feature
comes with a price, as I have
shown. To reuse data modules at
runtime you must ensure that each
form has its own data module. Cer-
tainly, using the trick of setting the
data module’s name property to
empty solves this problem, but the
difficulty here is that this solution
is not commonly known. I would
have thought that since their
release in early 1996 Borland
would have provided better facili-
ties for automating this (perhaps
TForm could have a new published
array property, DataModules, where
simply adding a data module to
this array would take care of all of
the details).

Furthermore the IDE isn’t smart
enough yet to understand how to
chain data modules. The most
common solution to this is to close
all datasets at design-time and then
reopen them in code. This has
always struck me as a poor solu-
tion. The problem is that the solu-
tion is, in itself, another problem
which requires another solution
(ie opening tables manually in the
OnCreate method).

Lastly, as the very reason for the
existence of inheritance shows,
there are always exceptions to the
rule. Data modules are reused in
their entirety without making a dis-
tinction between those properties
and events which should be reused
and those properties which should
not. Visual Form Inheritance helps
solve this problem but, as with all
of the other solutions to common
data module problems, it brings
with it new problems.

An Alternative
One alternative to data modules is
to create business objects. The
business objects can be as ‘closed’
or as ‘open’ as the designer’s own
personal preferences. In an ‘open’
business object (my own personal
preference) each business object
would descend ultimately from

TDataSet (to allow it to be used in
regular Delphi application devel-
opment). Thus you would have a
package of business objects
(TCustomers, TOrders, TContacts,
etc.) which would be installed on
the palette and business objects
would be dropped directly onto
forms. The problems of reuse at
runtime would disappear because
each form would have its own
instance of each business objects.
The problems of chaining in the
IDE would disappear because
there would be no chaining. The
problems of context specific differ-
ences would disappear because
developers could inherit from
business objects and add context
specific changes to the subclass.

OOP purists would, rightly, com-
plain that the approach of
descending directly from TDataSet
allows the business rules to be
undermined by providing an
opportunity for programmers to
bypass them. This is too long an
argument to cover adequately
here, but for brevity I will say that
although this is a very valid argu-
ment I opt for pragmatism instead
of purity. Many others would
disagree.

Conclusion
Data modules do allow business
rules to be reused across an appli-
cation, but not without a fair share
of problems. The solutions to
these problems are not without
their own difficulties. I hope that
Delphi 6 will address these issues.
The alternative is to use business
objects. If you believe, as many
people do, that the relational
model is on its way out and that the
object model will be its replace-
ment, then this might be a better
approach for you, because busi-
ness objects map more closely to
an object database than the
approach of using data modules
does.

Guy Smith-Ferrier is Technical
Director of Enterprise Logistics
Ltd (www.EnterpriseL.com), a
training company specialising in
Delphi. He can be contacted at
gsmithferrier@EnterpriseL.com

	Reusing Data Modules In SDI And MDI Applications
	Chaining Data Modules In The IDE
	Reusing DataSets With Business Logic
	Friend Or Foe?
	An Alternative
	Conclusion

